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Abstract 

The second-order generally invariant Lagrangians for the metric fields on any n-dimensiona 
manifold are studied as certain special coordinate functions on a space of jets. The number 
of independent Lagrangians of this type is determined. The dimensions n = 3 and n = 4 
are examined in detail with the help of a computer. 

1. Introduction 

The problem of  finding all invariant functions composed of  a geometric 
object field and its first two derivatives has become important since the birth 
o f  general relativity theory. Using an algebraic approach, some authors were 
able to obtain relatively complete results for the metric tensor fields on four- 
dimensional base manifolds (G~h~niau and Debever, 1956; G~h~niau, 1956; 
Petrov, 1966), for the scalar-tensor and vector-tensor field theories (Horndeski 
and Lovetock, 1972; Lovelock, 1974), etc. Related questions, as for instance 
the existence and uniqueness o f  certain invariant tensor fields, were also 
discussed. 

On the other hand, a new general method of  description o f  all generally 
invariant functions depending on the components o f  a geometric object and 
their derivatives up to an arbitrary order, has recently been proposed in terms 
of  the theory o f  fiber bundles (Krupka and Trautman, 1974; Krupka, 1974). 
The method has been applied to the problem of  second-order invariants of  
the metric fields in the first part o f  this work (Krupka, to appear). The purpose 
of  this paper is to complete the previous results by  shox~ng the number o f  
independent invariant functions, and by their explicit description in the 
cases of  three- and four-dimensional base manifolds. 

In my preceding paper, I have characterized the domain Tn2(R n* QR n*) 
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and the invariance group Ln a of the second-order generally invariant functions. 
We have described the natural action of Ln 3 o n  Tn2(R n * (DR n *), and found a 
collection of vector fields spanning the corresponding Lie algebra of vector 
fields. In certain local coordinates gik, Fi, je,  Rijkl,  Si, iel around any regular 
point of  Tn2(R n * QR n*) (i.e., the point satisfying det '~/ ) :#  0) the vector 
fields may be chosen in the form 

" = , i < ]  --q ( g i p R / q r s  - g i p R i q r s )  ORpqrs  

a 
~i, je = _ ~  j <~ k 

aPi, je' 

(1.1) 

~i, jet = 
OSi, lgl' J <" k <~ l 

In these formulas, n denotes the dimension of the base manifold, i,], p, q, 
. . .  = 1, 2 , . . . ,  n, and the summation convention is used. We shall deal with 
the vector-field system (1.1) referred to as the fundamental vector-field 
system on the manifold Tn 2 (R n* GR n *), and with its integral functions 
called the second-order generally invariant functions of the metric fields, or 
just the second-order invariants. 

2. The Rank o f  the Fundamental Vector-Field System 

In the context of the theory of vector-field systems, well elaborated for 
our purposes in a book by Hermann (Hermann, 1968), the rank of the 
fundamental vector-field system at a regular point (g/J, Fi, jk Rijkl, Si, ira) 
of the manifold Tn2(R n* O R  n *) is defined as the rank of the matrix formed 
by the coefficients in (1.1) standing at the base vector fields 

~gii' ~Fi, jg' ~Ri]gl' ~Si, jel 

and evaluated at the point. It is most important to know the rank of(1.1) 
at the maximal points, i.e., at the points of Tn2(R n* OR n *) where the rank 
is maximal. 

The form of the vector fields (1.1) shows that the rank (always assumed 
to be taken at a maximal point) is given as 

• + n -  ( 2 . 1 )  r=r '  +~n(n+ l ) + n  2 3 
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where r '  is the rank of the matrix 

--tl  

i< j  
l, 

a 
- - , i < ] ~  
ORqq 

An 

, (q )  e (/cO --" 
3Rqtct 

(2.2) 

and the other terms denote the number of  independent vector fields 3/3gi1, 
b/3Pi, ik, 3/3Si ]ta. In what follows we work with the square matrix An of 
dimension (1/2)n. (n - 1) formed by the coefficients in 2i7 standing at the 
vector fields 3/3Ri]i] (no summation). The remaining block matrix in (2.2) 
has not been written down explicitly. 

Let us establish the rank of the fundamental vector-field system (1.t)  for 
one-, two-, and three-dimensional base manifolds, and then prove a proposition 
concerning the general n-dimensional case. 

For n = 1 the fundamental vector-field system has the rank equal to the 
dimension of the manifold T12 (R 1. QR x.), which is equal to 3. Hence there 
is no nontrivial second-order invariant. 

The case n = 2 has been discussed in the first part of  this work. We have 
seen that 2[-2 = 0 and that at each regular point the rank of the fundamental 
vector-field system is equal to the number of the coordinates gij, Pi, ]k, Si, ira, 
that is to 17. The dimension of the manifold Tn 2 (R n* ®R n*) is equal to 18, 
and we have exactly one nontrivial independent second-order invariant. 

Let us examine the case n = 3. To show that at some points of  the manifold 
T32 (R a * (DR 3.)  the rank of the fundamental vector-field system (1.1) is 
equal to the number of  vector fields in (1.1), it suffices to verify that the 
determinant det A a of the matrix A 3 (2.2) does not vanish identically. For 
n = 3 there are six independent coordinates Riykl, say R 1212, R 1 al a, R 2 a23, 
R121 a, R 122a, R 1323. The coefficients at the vector fields 3/3R 1212, 
~/aR1313 , ~/~R2323 form the matrix Aa: 

/g13R1212 0 g12R1313 - gllR1323 - g13R1213~ 
+gnR1223 - g12R1213 0 \ 

~ 12R1223 +g13R1212 - g22R1213 g13R1323 +g33R1213 - g23R1313 / 

g22R1323 -g12R2323 -g23R1223 / 
g23R1323 - g33~t 223 - gt 3R2323 / 

One can easily check that the coefficient in the polynomial det A 3 standing 
at R1212R1313R1223 is equal to g13(g23 --g12g33) and therefore does not 
vanish identically. We conclude that there exist some values of the co- 
ordinates gi],Ri]i a where det A 3 =~ 0. At the points with these coordinates, 
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the rank (2.1) of the fundamental vector-field system (1.1) is maximal, and 
is equal to 57. Since the manifold T32(R 3, (DR 3.) is 60-dimensional, we 
have exactly three nontrivial independent second-order invariants of the 
metric fields. 

Let us now study the general case n ~> 3. We wish to show that the rank 
of the fundamental vector-field system is equal to the number of vector 
fields in (1.t). It suffices to prove that there exists a point of the manifold 
Tn2(Rn*QR n*) at which det An 4= 0. The matrix elements of A n (2.2) are 
given by 

/kij,  pq  = g j p R i q p q  - g i p R j q p q  - g j q R i p p q  + g i q R j p p q  (2.3) 

where 1 < i < j  < n, 1 ~<p < q < n. Note that the matrix A n has the form 

where 

and 

A. 

A 2 = 0  

/kl n, In Aln, 2n 

=~ /k2n, In.  /k2n, 2n 

k-~--ln,  ln A n - l n ,  2n  

• " " ~kin ,  n - - I n  

. . .  A:n,n.zln ! ) 

• " " / k n - - l n ,  n - - l n /  

Aij, q = 0 

/kin, j n  = g j n R i n j n  - g i n R  j n j n  - g n n R i j j n  

(1 ~< i , j  <~ n - 1). From (2.3) it follows that all matrix elements of din con- 
taining gnn lie in the submatrix An. Let us write down the coefficient in the 
determinant det din standing at (gnn) n-1. It is given as 

( 0 R122n R133n "'" R l n _ l n - l n ~  

o / ~ , k R n - l l l n  R n - 1 2 2 n  R n - 1 3 3 n  • . . 

(2.4) 

Evidently, all elements Rqkt appearing in the second determinant (2.4) are 
independent coordinates on the manifold Tn2(R n* ORn*): The only 
possible dependencies could arise from the well-known identities 

Rijkt + Ritjk + Riglj = 0 
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which are, however, automatically satisfied by all coordinates Ri] m having two 
equal indices. We deduce that the second determinant (2.4) does not vanish 
identically. If  now the rank of the fundamental vector-field system were not 
equal, at a point, to the number of  vector fields in (1.1), the determinant 
det A n would identically vanish and the coefficient (2.4) at (gnn) n-1 would 
be equal to zero. As the factor det An_ 1 does not contain, by definition, the 
coord ina t e s  Ri]]n , our assumption would give det A n_ 1 = 0 identically, a 
contradiction with the three-dimensional case. The rank of the fundamental 
vector-field system (1.1) must therefore be equal to the number 

The dimension of the manifold Tn 2 (R n * (2)R n*) being equal to 

dim Tn2(Rn*®R n*) = ~n(n + 1) + ~nZ(n + I) + ¼n2(n + 1) 2 (2.6) 

we obtain the maximal number of nontrivial independent second-order 
invariants subtracting (2.5) from (2.6). 

Our discussion can be summarized as follows. 
For n/> 3 the rank of the fundamental vector-field system (1.1) at its 

maximal points is given by (2.5). There exist exactly 

Mn = hn (n  - 1)(n - 2Xn + 3) (2.7) 

nontrivial independent second-order invariants of the metric fields. For n = 1 the 
rank is equal to 3, and there exists no nontrivial second-order invariant. For 
n = 2 the rank is equal to 17, and there is just one nontrivial independent 
second-order invariant. 

Thus for n = 3 (n = 4, n = 5) each basis of the second-order invariants of 
the metric fieIds consists ofMa = 3 (M 4 = 14, M s = 40) members. 

Not to complicate the language, we shall speak of the signature of a point 
Io 2f E Tn 2( Rn* ®Rn*), having in mind the signature of  the matrix gii of its 
coordinates (see Krupka, to appear). We note that the results of  this section 
are independent of  the signature. 

3. Generally Invariant Functions 

Having obtained the number of the generally invariant functions of  any 
flat local coordinate system on the manifold Tn2(R n* Q)Rn*), we may 
start to determine a basis of them. 

The form of the fundamental vector-field system (1.1) implies that each 
generally invariant function defined on an open domain of regular points in 
T n 2(Rn* @R n *) depends on the coordinates gO and Rijkl only. Further rough 
information about these functions can be obtained from the action of the 
group Ln 3 on Tn2(R n* QR n*) written in the coordinates gij, Rijkl (Krupka, 
to appear). The group action suggests a construction, similarly as in various 
classical considerations, of certain generally invariant functions in the form 
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of homogeneous polynomials; we shall call these invariants the canonical 
invariants. The simplest examples are the canonical invariants 

I= gikd'Rijkl 
"p "q kr s R J=g~ gJ g ~ ijktRpqrs (3.1) 

K = gaCgbigdpgJlgkrgqSRabcctRijklRpqrs 

well known in geometry and relativity. 
A question arises as to whether all generally invariant functions belonging to 

a flat local coordinate system on Tn2(R n* (3R n *) can be taken as the canonical 
invariants. If  we consider a domain of regular points in Tn2(R n* (3 R n *) 
around a maximal point of  the fundamental vector-field system (1.1) as an 
analytic manifold then the Frobenius complete integrability theorem ensures 
the existence of a fiat local coordinate system on the domain such that all its 
generally invariant functions are analytic in giJand Rqkt. Associated with these 
generally invariant functions are uniquely determined homogeneous poly- 
nomials which have to be generally invariant by themselves. It follows that 
there exists a basis of generally invariant functions consisting of canonical 
invariants. 

The problem of a description of all generally invariant functions is thus 
reduced to the problem of finding their basis formed by the canonical 
invariants. Further simplification follows from the fact that some points 
of TnZ(R n* (3 R n*) having the same signature can be joined by a transforma- 
tion from Ln 3. Hence all our considerations to determine such a basis can be 
made on a neighborhood of a selected point, say, with the coordinates g/] in a 
canonical form (i.e., gij equal to 0 if i ~ ], and g/i equal to 1 or - 1). After 
having found a basis one can transfer it by the group transformation onto 
other open sets of points with the same signature. 

Let us assume that we have an open set Uin Tn2(Rn*(3R n*) of  maximal 
and regular points with a given signature. Let Ube coveredby a fiat local co- 
ordinate system, let IL, ~ = 1, 2 , . . . ,  Mn (2.7) denote the corresponding basis 
of generally invariant functions. Then the 1-forms 

dI, ~ djJ + OIL aI, 
. . . . .  d e q k  I - (dRpqr s + 2g ipRjqrsd~J  ) 

~Rgk l ~Rpqrs 

are linearly independent on U, and the rank of the matrix (OlJRpqrs) is equal 
toMn at every point of  U. If  Uconta'ms a point whose matrixg~; is in a 
canonical form then it is not too difficult to see that any change of the 
signature leaves, at suitable points of  Tn2(Rn* (3 R n*), the rank Mn unchanged. 
The results to be established can now be formulated more precisely. 

Around any maximal point of the manifold Tn 2(Rn * (3 R n*) one can 
always choose a fiat local coordinate system so that all its generally invariant 
functions are the canonical invariants. If a system IL, t = 1, 2 . . . . .  Mn, of 
canonical invariants forms a basis of generally invariant functions on an open 
domain of maximal points with a given signature, then it forms a basis of  
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generally invariant functions on any other open domain of maximal points, 
independently of their signature. 

Let us return to the problem of finding a basis for the second-order 
generally invariant functions of  the metric fields. We know the maximal 
number of  functionally independent second-order invariants and have 
guaranteed that they can be taken as the canonical invariants. The canonical 
invariants may even be looked for at the points (gij, Fi ' ]k, Rijkl, Si, ]kl) 
satisfying gii = 5i], where 6 i] stands for the Kronecker symbol. This suggests 
an effective procedure of constructing a basis and the corresponding flat local 
coordinate system. Firstly, we choose some canonical invariants I ,  L = 1, 2, 
• . . ,  Mn, and consider them at a point where gi] = 6ii. Secondly, on differ- 
entiating we obtain the matrix (OlJ3Ri]kl), substitute the numerical values 
for the variables Ri]m, and form the corresponding numerical matrix 
(OId3Ri]m) o. Thirdly, we compute the rank of (OIdORi]kt)o. If  it is equal to 
Mn then the canonical invariants I t define the desired basis and we are done. 
Otherwise we have to choose another point (i.e., other numerical values for 
the variables Riim) or start with another collection of canonical invariants. 
In this way the theory of generally invariant functions is reduced to com- 
putations of determinants. We remark that the order of determinants we are 
to consider in practice is, as a rule, a large number: For n = 4 it is less than or 
equal to M 4 = 14. It is therefore necessary to calculate the determinants 
with the aid of computers. 

4. Example: n = 3 

Applying the results of Sections 2 and 3 to three-dimensional manifolds, 
we obtain the following: 

Around each maximal point of the manifold T32(R 3. ® R 3.) the canonical 
invariants (3.1) form a basis of generally invariant functions. 

To verify this assertion, it suffices to consider the invariants (3.1) at a 
point where gij = 6ii, and show that the matrix 

12 ~R1313 ~R2323 3R1213 ~R1223 ~ 2 

M M M M 

! ~/1212 ~R1313 aR2323 ~/i213 0R1223 0R1323 I 

~R1313 ~R2323 ~R1213 ~Rx22a 

has the rank, at a point, equal to 3. Writing 

I = .~ Ri]i], j__ ~ 2 Rijkl  , K = ~ RijkjRilqtRkpqp 
t,] i, Lk, l i ,],k,l ,p,q 
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we easily obtain for the determinant of the submatrix consisting of the first 
three columns the expression 

( 1  

det R1212 

l lmlR l pmp + R 21rn tR 2pmp 

0 

Rt313 - R1212 

R 3lmlR3pmp - R21mlR2pmp 

o ) 
R2323 -- R1212 

R 31ml R 3pmp - R llml R l pmp /  

where we sum over pairs of indices. This determinant does not vanish 
identically. On comparison with (2.7) we obtain our assertion. 

In view of the result, it can be concluded that at the points where g/J = 8iJ 
and the above determinant is nonzero, the functions j / ,  I, J, K, R 12a3,R1223, 
Raa23 form a fiat local coordinate system for the vector-field system (1.1). 

5. Example:  n = 4 

Let us study in detail the case of four-dimensional base manifolds. Using 
the same notation as before we set 

Rii  = gktRik]l, Ri i  = g&gilRkl,  

R~k, = gimRrnjkl. RO) = giP gJq Rpqk,, 

and introduce the following polynomials: 

R~ = gi '%k 

R"k' = g*,' g' y%,qr, 

I 1 = R i  i 

I2 = RiJRij 

I a = Ri]klRi]kl 

I 4 = R q R i k R ] k  

Is = R*kRSRq~, 

I6 = R"Jk~R,,/Rek~ 
17 = Dpqi]Dkl D .t~. l~.pql~ijk: l 

I8 = R~ Ri*RijRk~ 

I 9 = RiPRqJktRpqRijkl 

11o = l~Pq r2]k1~l o i  
. .  . .  .•pqi_~lkl 

I11 = RiP RklrsRiprsR iila 

(5.0 
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I12 = R P q l ~ p m q R m j k l R i j k l  

/13 = R P q i ] R k l r S R p q r s R i j k l  

114 = R P j k l R i q r S R p q r s R i j k l  

957 

All these polynomials, homogeneous in both gi] and Ripa ,  satisfy the system 
of partial differential equations defined by the vector fields (1.1). We shall 
sketch the proof of the following theorem: 

Theorem. Around each maximal point of the manifold T4Z(R 4.  ® R 4 *) 
the canonical invariants (5.1) form a basis of generally invariant 
functions. 

To prove this assertion, we must examine, as indicated at the end of 
Section 3, the corresponding Jacobi matrix (3IJ3Ri]kz).  Its elements can 
easily be computed by means of a simple algebraic temma: 

Lemrna. Let C i/kt be any collection of numbers, where i ,],  k,  
l = 1, 2 . . . . .  n. There exist two uniquely determined collections of 
numbers, C£/kl and C[/m, such that 

c i ]k '  = Ci]ok' + C{ ]k,  

c ~ k ' =  _ ~ l ; ik '=  __ Cilolk = Ckol'] 

C ~  "k, .l. ciol] k ..}.CioR'].=_O 

and 

~JkzR~jk I = 0 

for all values of the variables Rijkl .  If C ijkl has the property 

Ci] kI = _ U i k l  = _ c iJ  lk  = c k l i j  

then C 0'kl is defined by 

C~kl= ~(2C/J kl _ C " / k  _ C i ~ I / )  

We shall apply the iemma to our homogeneous polynomials (5.1). Note 
that each of the polynomials is of the form 

:: #:kZR~m 
where C i/kt are polynomials in g//and R i/kZ. Since f is homogeneous we have 

- -  = r: : -  K t~i/el~ - K "4jktR " Of Ri]  kl . .  " a  -- " ~ ~ . i /k l  -- " ~ 0  i]tct 
ORi]kl 

where K denotes the degree o f f  (in the variables R/ira). Thus the derivatives 
Of/~Ri]kl, where all the variables Ri]kl are considered as independent, are 
equal to the suitably symmetrized Cgkt i.e., to Cio ]kt. Not all the variables 
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Rijkl are, however, independent; we choose the following 20 independent 
variables among the Ri]kl's: 

R 1212, R1313, R 14t4, R 2323, R2424, R 3434, R 1213 

R 1214, R 1314, R2123, R 2124, R2324, R 3132, R31a4 

R3234,,R4142, R4143, R4243, g 1234, R 1324 

(5.2) 

and consider all other components Riikl as functions of (5.2). Then the 
derivative Of/bRi]kl with respect to (5.2) becomesequal, up to a constant 
nonzero factor depending on the sequence of the indices i,], k, l, to the 

r, ijkl function Cio jkl. Denote by "~o(0 the function defined in this way by the 
polynomial I 6 for example 

Coil kt = ~ R p q ( R p i R q k g ]  l _ R P ] R q k  gi l  _ N p i R q l g ]  k + RP]Rqlgik ) (s) 

The rank of the matrix (OIjORijkt), where L = 1, 2 , . . . ,  14 andRiigt runs over 
the set (5.2), must therefore be the same as the rank of the matrix (cii~{o(~j).. at 
each point. One can easily construct the latter matrix. According to Section 3 
we consider the matrix at the point 

R1212 =R1213 =R1314 =R2123 =R2324 =R4143 =R1324 = 1 

R1414 =R2323 = R2424 =R1214 =R3132 =R3134 

=R3234 =R4142 = R4243 =R1234 = 0 

R1343 = R 3434 = R2124 = - 1 
gJj = siJ 

(5.3) 

To determine its rank we consider the squared submatrix defined by the 
variables R2424 , R1213 , R1214 , R2123 , R2124 , R2324 , R3132 , R3134 , R 3234, 
R4142, R4143, R4243, R 1234, R 1324- The calculation by means of a computer 
shows that the rank is equal to the number of the polynomials (5.1), i.e., to 
14, which proves our theorem. 

Another result of our calculation is concerned with the particular point 
(5.3) of the manifold T42(R4*QR4*): 

On a neighborhood of the point (5.3), the functions ~J, I~(5.1), R1212, 
R 1313, R 1414, R2323, R 3434, R2123 form a fiat locat coordinate system for 
the vector-field system (1.1). 
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