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Abstract

The second-order generally invariant Lagrangians for the metric fields on any #-dimensiona
manifold are studied as certain special coordinate functions on a space of jets. The number
of independent Lagrangians of this type is determined. The dimensionsn =3andn =4

are examined in detail with the help of a computer.

1. Introduction

The problem of finding all invariant functions composed of a geometric
object field and its first two derivatives has become important since the birth
of general relativity theory. Using an algebraic approach, some authors were
able to obtain relatively complete results for the metric tensor fields on four-
dimensional base manifolds (Géhéniau and Debever, 1956; Géhéniau, 1956;
Petrov, 1966), for the scalar-tensor and vector~tensor field theories (Horndeski
and Lovelock, 1972; Lovelock, 1974), etc. Related questions, as for instance
the existence and uniqueness of certain invariant tensor fields, were also
discussed.

On the other hand, a new general method of description of all generally
invariant functions depending on the components of a geometric object and
their derivatives up to an arbitrary order, has recently been proposed in terms
of the theory of fiber bundles (Krupka and Trautman, 1974; Krupka, 1974).
The method has been applied to the problem of second-order invariants of
the metric fields in the first part of this work (Krupka, to appear). The purpose
of this paper is to complete the previous results by showing the number of
independent invariant functions, and by their explicit description in the
cases of three- and four-dimensional base manifolds.

In my preceding paper, I have characterized the domain T,,2(R" * ©R"*)
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and the invariance group L, of the second-order generally invariant functions.
We have described the natural action of L, on T,,2(R?*®R"*), and found a
collection of vector fields spanning the corresponding Lie algebra of vector
fields. In certain local coordinates g%, Ty jx, Ryjk;, Sy, jig around any regular
point of T,2(R"*©R"#) (i.e., the point satisfying det(g¥) # 0) the vector
fields may be chosen in the form

—t

i = g~ @ipRiqrs * gjpRiars) Rpgs </

pars
— 8 L
g = (gipqurs - gijiqrs) m, i<j
, (1.1)
wd, jE _ <k
s
al‘,-, ik
ikl o O j<k<li
0S; ju

In these formulas, n denotes the dimension of the base manifold, 1,7, p, q,
...=1,2,...,n,and the summation convention is used. We shall deal with
the vector-field system (1.1) referred to as the fundamental vector-field
system on the manifold T,,2(R"* ©OR"*), and with its integral functions
called the second-order generally invariant functions of the metric fields, or
just the second-order invariants.

2. The Rark of the Fundamental Vector-Field System

In the context of the theory of vector-field systems, well elaborated for
our purposes in a book by Hermann (Hermann, 1968), the rank of the
fundamental vector-field system at a regular point (g7, T'; jx Ryjxs, Si, jx1)
of the manifold T,,2(R** QR"*) is defined as the rank of the matrix formed
by the coefficients in (1.1) standing at the base vector fields

2 2 2 2
¥’ Ty ORym  OSijm

and evaluated at the point. It is most important to know the rank of (1.1)
at the maximal points, i.e., at the points of T,2(R"*©OR"*) where the rank
is maximal.

The form of the vector fields (1.1) shows that the rank (always assumed
to be taken at a maximal point) is given as

/ +1 +
r=F +%n(n+l)+n~(n2 )+n'(n32> .1
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where #' is the rank of the matrix

a
i<j—>
ORyjs1 OR;jk1

» @) # (kD ~

=y
i<j A,
4

2.2

and the other terms denote the number of independent vector fields 3/9g”,
/0Ty ji, 0/08;, jzs- In what follows we work with the square matrix A, of
dimension (1/2)n - (n — 1) formed by the coefficients in Z;; standing at the
vector fields 8/dR;;; (no summation). The remaining block matrix in (2.2)
has not been written down explicitly.

Let us establish the rank of the fundamental vector-field system (1.1) for
one-, two-, and three-dimensional base manifolds, and then prove a proposition
concerning the general n-dimensional case.

For n =1 the fundamental vector-field system has the rank equal to the
dimension of the manifold T 2(R'*©R1¥), which is equal to 3. Hence there
is no nontrivial second-order invariant.

The case n = 2 has been discussed in the first part of this work. We have
seen that Z;, = 0 and that at each regular point the rank of the fundamental
vector-field system is equal to the number of the coordinates g7, T; jx, Sy jii»
that is to 17. The dimension of the manifold 7},2(R”* ©R"”*) is equal to 18,
and we have exactly one nontrivial independent second-order invariant.

Let us examine the case n = 3. To show that at some points of the manifold
T32(R3* ©OR3*) the rank of the fundamental vector-field system (1.1) is
equal to the number of vector fields in (1.1), it suffices to verify that the
determinant det Aj of the matrix A3 (2.2) does not vanish identically. For
n = 3 there are six independent coordinates Rjx;, say Ry212,R1313, Rp323»
R1 213, R 1223 R 1323- The coefficients at the vector fields B/BRulz s
0/0R 1313, 0/0R 23,3 form the matrix Aj:

0 812R1313 — g11R1323 — £13R1213

813R 1212 t8uRi223 — g12R1213 0
812R1223 +813R 1212 — 822R1213 813R1323 T 833R1213 — 823R1313

822R1323 — £12R2323 — £23R 1223

823R1323 — £33R1223 — 813R 2323
0

One can easily check that the coefficient in the polynomial det A3 standing
at Ry512R1313R 1223 is equal to g13(g33 — g12833) and therefore does not
vanish identically. We conclude that there exist some values of the co-
ordinates g » Ryjxy where det Aj # 0. At the points with these coordinates,



952 DEMETER KRUPKA

the rank (2.1) of the fundamental vector-field system (1.1) is maximal, and
is equal to 57. Since the manifold 73%(R3* ©R3*) is 60-dimensional, we
have exactly three nontrivial independent second-order invariants of the
metric fields.

Let us now study the general case n = 3. We wish to show that the rank
of the fundamental vector-field system is equal to the number of vector
fields in (1.1). It suffices to prove that there exists a point of the manifold
T, 2(R?**OR"*) at which det A,, # 0. The matrix elements of A,, (2.2) are
given by

Ay, pq = 8jpRiaqpa — 8ipRigpq — &jqRippq * 8iqRjppq 2.3)
where 1 <i<j<n,1<p<gq<n Note that the matrix A, has the form

An—l E
AR F=3 " % ______
P A,
where
Az =0
Aln,ln Aln,2n T A1n,n»~1n
A2n, in Aopon “ Bopnetn
A, = . . . . . . . . .
An——m,ln An—ln,zn e An-ln,n—ln
and
B, 5= 0

Ay, jn= gjnRinjn - ginRjnjn - gnnRijjn
(1 <i,j<n—1). From (2.3) it follows that all matrix elements of A, con-

taining g,,, lie in the submatrix A,. Let us write down the coefficient in the
determinant det A, standing at (g, )* L. It is given as

0 Riaon Ri33n “** Rip_in—1n
Rotn 0 R33n " Ropn_1n—1n
det Ay _y -det .. e
Ry_111n Rp-120n Rnp_13sn 7 0

(2.4)

Evidently, all elements R;jx; appearing in the second determinant (2.4) are
independent coordinates on the manifold 7,,2(R"* © R"*): The only
possible dependencies could arise from the well-known identities

Rijki + Ryjie + Rixy; =0
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which are, however, automatically satisfied by all coordinates R ;jz; having two
equal indices. We deduce that the second determinant (2.4) does not vanish
identically. If now the rank of the fundamental vector-field system were not
equal, at a point, to the number of vector fields in (1.1), the determinant

det A, would identically vanish and the coefficient (2.4) at (g,,)7?"* would
be equal to zero. As the factordet A,_; does not contain, by definition, the
coordinates Ry, , our assumption would give det A,_; = 0 identically, a
contradiction with the three-dimensional case. The rank of the fundamental
vector-field system (1.1) must therefore be equal to the number

n+l n+2
r=n'[n+( 5 )+( 3 )} 2.5)

The dimension of the manifold T}, (R"* ®R"*) being equal to
dim T, 2(R"*QR"™)=5n(n + ) +5n2(n+ D+ in2( + 12 (2.6)

we obtain the maximal number of nontrivial independent second-order
invariants subtracting (2.5) from (2.6).

Our discussion can be summarized as follows.

For n 2 3 the rank of the fundamental vector-field system (1.1) at its
maximal points is given by (2.5). There exist exactly

M,=4%nn— Dn—2Dn+3) 2.7

nontrivial independent second-order invariants of the metric fields. For n = 1 the
rank is equal to 3, and there exists no nontrivial second-order invariant. For

n =2 the rank is equal to 17, and there is just one nontrivial independent
second-order invariant.

Thus for n =3 (n = 4, n = 5) each basis of the second-order invariants of
the metric fields consists of M3 = 3 (M, = 14, M5 = 40) members.

Not to complicate the language, we shall speak of the signature of a point
Jo*fE T,,2(R"*©R"*), having in mind the signature of the matrix g7 of its
coordinates {see Krupka, to appear). We note that the results of this section
are independent of the signature.

3. Generally Invarignt Functions

Having obtained the number of the generally invariant functions of any
flat local coordinate system on the manifold T}, 2(R"* @ R"**), we may
start to determine a basis of them.

The form of the fundamental vector-field system (1.1) implies that each
generally invariant function defined on an open domain of regular points in
T,2(R"* OR"*) depends on the coordinates g¥ and R;;; only. Further rough
information about these functions can be obtained from the action of the
group L,,3 on T,2(R"* O R"*) written in the coordinates g7, R;j;; (Krupka,
to appear). The group action suggests a construction, similarly as in various
classical considerations, of certain generally invariant functions in the form
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of homogeneous polynomials; we shall call these invariants the canonical
invariants. The simplest examples are the canonical invariants

I=g*d'Ryjxy
J = g7 RyjR pqrs ERY
K=g% gbzgd pg’ x'g krgquabcth‘jklqurs

well known in geometry and relativity.

A question arises as to whether all generally invariant functions belonging to
a flat local coordinate system on T,,2(R"*Q R"*) can be taken as the canonical
invariants. If we consider a domain of regular points in T,,2(R"* O R"*)
around a maximal point of the fundamental vector-field system (1.1) as an
analytic manifold then the Frobenius complete integrability theorem ensures
the existence of a flat local coordinate system on the domain such that all its
generally invariant functions are analytic in g¥and Rijx;. Associated with these
generally invariant functions are uniquely determined homogeneous poly-
nomials which have to be generally invariant by themselves. It follows that
there exists a basis of generally invariant functions consisting of canonical
invariants.

The problem of a description of all generally invariant functions is thus
reduced to the problem of finding their basis formed by the canonical
invariants. Further simplification follows from the fact that some points
of T,2(R"*® R"*) having the same signature can be joined by a transforma-
tion from L,,3. Hence all our considerations to determine such a basis can be
made on a neighborhood of a selected point, say, with the coordinates g7 in a
canonical form (i.e., g% equal to Qif i # , and g equal to 1 or —1). After
having found a basis one can transfer it by the group transformation onto
other open sets of points with the same signature.

Let us assume that we have an open set U in T,,2(R"* O R"*) of maximal
and regular points with a given signature. Let U be covered by a flat local co-
ordinate system, let [,,¢= 1,2, ..., M, (2.7) denote the corresponding basis
of generally invariant functions. Then the 1-forms

_ol, . ol _ ol .
dl, = 5;? dg + gR_l]; defkl - m (dqurs + Zgipqursdgl])
are linearly independent on U, and the rank of the matrix (3/,/R pars) is equal
to M, at every point of UL If U/ contains a point whose matrix g7 isin a
canonical form then it is not too difficult to see that any change of the
signature leaves, at suitable points of 7,2(R"*® R"*), the rank M,, unchanged.
The results to be established can now be formulated more precisely.

Around any maximal point of the manifold T,,2(R**® R”*) one can
always choose a flat local coordinate system so that all its generally invariant
functions are the canonical invariants, If a system /., t= 1,2, ..., M,, of
canonical invariants forms a basis of generally invariant functions on an open
domain of maximal points with a given signature, then it forms a basis of
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generally invariant functions on any other open domain of maximal points,
independently of their signature.

Let us retum to the problem of finding a basis for the second-order
generally invariant functions of the metric fields. We know the maximal
number of functionaily independent second-order invariants and have
guaranteed that they can be taken as the canonical invariants. The canonical
invariants may even be looked for at the points (g7, T'; ks Rija» S, jrt)
satisfying g/ = 64, where 6% stands for the Kronecker symbol. This suggests
an effective procedure of constructing a basis and the corresponding flat local
coordinate system. Firstly, we choose some canonical invariants [, 1= 1, 2,

.,»M,,, and consider them at a point where g¥ = §%_ Secondly, on differ-
entiating we obtain the matrix (87,/3R;jx;), substitute the numerical values
for the variables R;jz;, and form the corresponding numerical matrix
(3/0Rjx1)o- Thirdly, we compute the rank of (31,/dR;jx))e- If it is equal to
M,, then the canonical invariants J, define the desired basis and we are done.
Otherwise we have to choose another point (i.e., other numerical values for
the variables R ;) or start with another collection of canonical invariants.
In this way the theory of generally invariant functions is reduced to com-
putations of determinants. We remark that the order of determinants we are
to consider in practice is, as a rule, a large number: For n = 4 it is less than or
equal to My = 14. It is therefore necessary to calculate the determinants
with the aid of computers.

4. Example: n=3

Applying the results of Sections 2 and 3 to three-dimensional manifolds,
we obtain the following:

Around each maximal point of the manifold T'32(R3*® R3*) the canonical
invariants (3.1) form a basis of generally invariant functions.

To verify this assertion, it suffices to consider the invariants (3.1) at a
point where g# = §7, and show that the matrix

of ol of of ol ol
OR1312 ORi1313 ORz333 ORpz ORizp3 ORizgs
oJ o oJ oJ of aof
0Riz12 3Ry315 0Ry323 OR1313 0Rizp3 ORyz3
aK oK oK oK oK oK

O0R1212 OR1313 ORjz333 ORyz13 0Ripp3 ORjsps
has the rank, at a point, equal to 3. Writing

I=2 Ry, J= 2 Riw, k= 3 RijriRitgiR kpgp
ij i k1 LikLpq
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we easily obtain for the determinant of the submatrix consisting of the first
three columns the expression

1 0
det R Rz — R

R llmlR 1pmp + R2lmlR2pmp R 31mlR3pmp . R2lmlR2pmp

0
R2323 — Ruznz
RBImIRBpmp - RllmlRlpmp

where we sum over pairs of indices. This determinant does not vanish
identically. On comparison with (2.7) we obtain our assertion. o

In view of the result, it can be concluded that at the points where g¥ = 6%
and the above determinant is nonzero, the functionsg¥, I,J, K ,R1213,R1223,
R 3,3 form a flat local coordinate system for the vector-field system (1.1).

5. Example: n=4

Let us study in detail the case of four-dimensional base manifolds. Using
the same notation as before we set

Rij=g"Riyy,  Ri=gkg'Ry), R/ =g"Ry
Rixi = 8™ Ronjic, Ry =gPd Rygia,  RT¥ =gl IR
and introduce the following polynomials:

I; =R/}

I, =RYRy;

I3 =R Ry

I, =RIRFRy

Is =R™R'R;y,

I =R™NR, Ry (5.1)
I; =RPUIRG R i

Iy = R*RI'R;Ry,

Iy = RPRYMR . Ry
Lo =RPIR*R], R,
Iy =R'PRSRE Ry
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Iy = RP Ry g R R
I 137 quthklrSR pqrsRijki
I14 = RPMRIR Rk

All these polynomials, homogeneous in both g¥ and R, satisfy the system
of partial differential equations defined by the vector fields (1.1). We shall
sketch the proof of the following theorem:

Theorem. Around each maximal point of the manifold T;*(R4* O R4*)
the canonical invariants (5.1) form a basis of generally invariant
functions.

To prove this assertion, we must examine, as indicated at the end of
Section 3, the corresponding Jacobi matrix (91,/0R;jx;). Its elements can
easily be computed by means of a simple algebraic lemma:

Lemma. Let C7¥! be any collection of numbers, where , 7, k,
1=1,2,...,n There exist two uniquely determined collections of
numbers, C§¥ and CY¥, such that

CiHl = Cg'kl + Cijkl
Céjkz - C{)ikl - Cg‘zk - C(I)dij
Cg‘kl + C(i)ljk + Céklj -0
and
CIRyjia =0
for all values of the variables Rjj;. If CY* nas the property
kL = _ ¢likl = _ cijlk - o]
then C’g k1 is defined by
C(i)ikl =1 (2Cijkl _ ik _ Ciklj)

We shall apply the lemma to our homogeneous polynomials (5.1). Note
that each of the polynomials is of the form

F=C"™ Ry
where C7* are polynomials in g/ andR ijk1- Since f is homogeneous we have
of

where K denotes the degree of f (in the variables R;jx;). Thus the derivatives
0f/0R i, where all the variables Ry are considered as independent, are
equal to the suitably symmetrized C¥¥, i.e., to C7¥ Not all the variables

Rji=K-f=K-C™Ryy=K-CJ Ry
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Riji; are, however, independent; we choose the following 20 independent
variables among the R;j/’s:

Ri212-R1313: R1414,R 2323, R2a24, R3434, R1213

R 314, R1314> R2123: R 2124, Ry3245 R3132, R3134 (5.2)

R3334,R4142,R4143, Ra243: R1234, Ri324

and consider all other components R ;;; as functions of (5.2). Then the
derivative 9f/0R ;5 with respect to (5.2) becomes equal, up to a constant
nonzero factor depending on the sequence of the indices 7,7, &, /, to the
function C” 'k Denote by C” had o(, the function defined in this way by the
polynomlal I,; for example

(E)]Eké) = iqu(RPIRf?kgll RP)‘qugJI Rlengjk +RPIqu zk)

The rank of the matrix (01/3R ), where ¢ = 1, 2, . . ., 14 and Ryj; runs over
the set (5.2), must therefore be the same as the rank of the matrix (C ”k’) at

each point. One can easily construct the latter matrix. According to Sectlon 3
we consider the matrix at the point

Riz12 =R1213 = Ry314 = Ro123 " Rp304 =Ryja3 R 1324 = 1

Ri414 = R3333 = Ry424 = R1214 = R3130 =R 3134

=R3234 =Raia2 = R4243 = Ry334 =0 (5.3)
Ry343 =R3434 =Rypq = -1
i =5

To determine its rank we consider the squared submatrix defined by the
variables Ry424, R1213, R1214, R2123, R2124, R2324, R3132, R3134, R3234,
R4142 . R4143 R R4243 5 Rl 234> R 1324+ The calculation by means of a computer
shows that the rank is equal to the number of the polynomials (5.1), i.e., to
14, which proves our theorem.

Another result of our calculation is concerned with the particular point
(5.3) of the manifold T42(R4*OR4*).

On a neighborhood of the point (5.3), the functions g#, I,(5.1), Ryp2,
R 13135 R1414 s R2323, R3434 , R2123 form a flat local coordinate system for
the vector-field system (1.1).
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